Геофизические методы исследования скважин используются для получения геологической информации о разрезах скважин, выявления и оценки полезных ископаемых, контроля за разработкой месторождений и изучения технического состояния скважин. Эти методы позволяют изучать физические свойства горных пород в условиях скважины.
Методы ГИС (геофизические исследования скважин) включают в себя электрические, радиоактивные, акустические, магнитные, термические и другие виды исследований. Они позволяют представить разрезы скважин в виде комплекса физических характеристик, таких как удельное электрическое сопротивление, радиоактивность, теплопроводность, скорость распространения упругих волн и другие параметры.
Методы ГИС также применяются для контроля технического состояния скважин и исследования действующих скважин в процессе разработки месторождений, поэтому качество и полнота информации должно быть на высоком уровне, поэтому специалисты компании LTS используют инструменты передовых компаний США, Австралии, Канады и Швеции.
Электрические и электромагнитные методы исследования скважин




Электрические и магнитные методы исследования разрезов скважин включают модификации, основанные на изучении электромагнитных полей различной природы в горных породах. Электромагнитные поля делятся на естественные и искусственные. Естественные поля в земной коре обусловлены электрохимическими процессами, магнитотеллурическими токами и другими природными явлениями. Искусственные электромагнитные поля создаются в горных породах генераторами постоянного или переменного тока различной мощности и представляют собой непосредственный результат деятельности человека, направленный на изучение строения земной коры, поиски, разведку и разработку месторождений.
Классификация электрометодов исследования скважин основана на характере происхождения изучаемого электромагнитного поля и его изменении во времени – на частоте. По происхождению методы электрометрии делятся на две большие группы – естественного и искусственного электромагнитного поля, а по частоте – на методы постоянного, квазипостоянного и переменного поля. Среди методов переменного поля различают низко- и высокочастотные.
Для изучения стационарных естественных электрических полей применяются методы потенциалов собственной поляризации горных пород (ПС). Искусственные стационарные и квазистационарные электрические поля исследуются методами кажущегося сопротивления (КС), микрозондирования (МЗ), сопротивления заземления (БК и МБК), методами регистрации тока (ТМ) и потенциалов вызванной поляризации (ВП). Искусственные переменные электромагнитные поля изучаются индукционными (ИК), диэлектрическими (ДМ) и радиоволновыми методами.
Акустический каротаж
Акустический каротаж (АК) основан на изучении характеристик упругих волн ультразвукового и звукового диапазона в горных породах. При АК в скважине возбуждаются упругие колебания, которые распространяются в ней и в окружающих породах и воспринимаются приемниками, расположенными в той же скважине. В естественном залегании горные породы практически являются упругими телами. Если в элементарном объеме некоторой упругой среды в течение короткого времени действует внешняя возбуждающаяся сила, в среде возникают напряжения, вызывающие относительное перемещение частиц. Это ведет к возникновению двух типов деформации: деформации объема (растяжения, сжатия) и деформации формы (сдвига). Процесс последовательного распространения деформации называется упругой сейсмической волной, которая, распространяясь во все стороны, захватывает все более удаленные области. Поверхность, отделяющая в данный момент времени область среды, в которой уже возникло колебание частиц, от той, где колебания еще не наблюдаются, называется фронтом волны. Линии, нормальные к волновым поверхностям, носят название лучей. В однородной среде лучи прямолинейны, а в неоднородной они имеют криволинейную форму. Распространение фронта волны изучается при помощи известного в геометрической сейсмике принципа Гюйгенса–Френеля, согласно которому каждая точка фронта рассматривается как источник элементарных волн, а понятие луча связывают с направлением переноса энергии волны. Различают два типа волн – продольные Р и поперечные S.
Продольная волна несет с собой только деформации объема. Распространение продольной волны представляет собой перемещение зон растяжения и сжатия; частицы среды совершают колебания около своего первоначального положения в направлении, совпадающем с направлением распространения волны. Поперечная волна связана с деформацией формы; распространение ее сводится к скольжению слоев среды относительно друг друга; частицы среды совершают колебания около своего первоначального положения в направлении, перпендикулярном направлению распространения волны. Поперечные волны могут существовать только в твердых телах.
Если упругая волна достигает границы раздела двух сред с различными упругими свойствами, часть энергии волны отражается – образуется отраженная волна, а часть проходит через границу – проходящая волна. Отраженная волна возникает в том случае, если волновое сопротивление (произведение плотности на скорость) у одной среды больше, чем у другой. Волна, проходящая через границу раздела, изменяет свое направление – луч преломляется.
Акустический каротаж в основном варианте сводится к определению скорости распространения упругих колебаний в пересеченных скважиной породах (АК по скорости); могут также определяться поглощающие свойства горных пород (АК по затуханию). Скорость распространения упругих волн в горных породах зависит от их минералогического состава, пористости и формы порового пространства и, следовательно, тесно связана с их литологическими и петрографическими свойствами. Поглощающие свойства горных пород различаются еще больше, чем скорости распространения в них упругих волн, и зависят от геологического характера пород. Среди горных пород выделяются по большому ослаблению ими упругих колебаний газоносные, трещинные и кавернозные породы. Сильное влияние на затухание оказывает глинистость пород.
Акустический каротаж по скорости основан на изучении скорости распространения упругих волн в горных породах, вскрываемых скважинами путем измерения интервального времени ∆t = (t2 – t1)/S (мкс/м).
Акустический каротаж по затуханию основан на изучении характеристик затухания упругих волн в породах, вскрываемых скважиной. Энергия упругой волны и амплитуда колебаний, наблюдаемых в той или иной точке, зависят от многих факторов – мощности излучателя, расстояния от него до данной точки и характера горных пород. В однородной среде при распространении волны со сферическим фронтом количество энергии, приходящейся на единицу объема, уменьшается пропорционально квадрату расстояния от рассматриваемой точки до излучателя; амплитуда колебаний уменьшается обратно пропорционально этому расстоянию.
При акустическом каротаже измеряется скорость распространения упругих волн в породе в интервале базы зонда. Породы, залегающие за пределами базы, не влияют на измеряемые величины. Рассмотрим форму кривых АК для одиночных пластов различной мощности, размещенных в однородной вмещающей среде. Кривые получены для трехэлементного зонда, точка записи отнесена к середине его базы S.
Расходометрия
Расходометрия скважин является одним из основных методов исследования динамики отбора и поглощения жидкости в эксплуатационных и нагнетательных скважинах. Расходометрия заключается в измерении скорости перемещения жидкости по скважине приборами, которые называются расходомерами. С помощью расходометрии решаются следующие задачи: в действующих скважинах выделяют интервал притока или поглощения жидкости, в остановленных выделяют наличие перетока жидкости по стволу скважины между перфорированными пластами, изучают суммарный дебит, или расход жидкости отдельных пластов, разделенных неперфорированными интервалами; строят профили притока или приемистости по отдельным участкам пласта или для пласта в целом.
Расходомеры бывают механические и термоиндуктивные, которые по условиям измерения делятся на пакерные и беспакерные, а по способу регистрации – на автономные (регистрация сигналов осуществляется внутри приборов) и дистанционные (сигналы передаются по линии связи на поверхность, где регистрируются).Расходомер механического типа при работе в скважине обычно опускают до кровли верхнего перфорированного интервала. Полученная кривая показывает количество жидкости, проходящей через сечение скважины на различных глубинах, и называется интегральной расходограммой. Она характеризует суммарный дебит всех пластов, расположенных ниже данной глубины. В интервалах притока на кривой наблюдается возрастание показаний, а в интервалах поглощения – их уменьшение. Интегральная расходограмма используется для построения дифференциальной зависимости, характеризующей интенсивность притока (поглощения) на единицу мощности пласта.Термоэлектрические расходомеры, работа основана на зависимости степени охлаждения нагреваемого сопротивления, помещенного в поток, от средней линейной скорости потока.
Кавернометрия
Фактический диаметр скважины dс в ряде случаев отклоняется от его номинального dн, равного диаметру долота, которым бурилась скважина. Увеличение dс (образование каверн в стволе скважины) наблюдается против глин и сильноглинистых разностей (мергелей и др.) из-за гидратации тонкодисперсных глинистых частиц и в результате их размыва гидромониторным воздействием струи, вытекающей из долотных отверстий. При использовании соленого бурового раствора гидратация глинистых частиц уменьшается, что приводит к замедлению образования каверн. Против соляных и гипсовых пластов из-за растворения этих пород водой промывочной жидкости наблюдается увеличение диаметра скважины.
Иногда увеличение dс наблюдается и против трещиноватых пород, которые могут быть ослаблены по механической прочности в процессе бурения. Номинальный диаметр отвечает крепким породам – известнякам, доломитам, плотным песчаникам. Оседание глинистых частиц против проницаемых пластов в результате фильтрации бурового раствора в пласт приводит к образованию глинистой корки на стенке скважины и, следовательно, к уменьшению диаметра dс. Толщина глинистой корки изменяется от нескольких миллиметров до 5 см и более. Знать фактический диаметр скважины необходимо для расчета затрубного пространства при цементировании обсадных колонн, выбора места установки башмака колонны, фильтров, пакеров и испытателей пластов, а также для контроля технического состояния скважины в процессе бурения.
Результаты кавернометрии используют при обработке данных ГИС, для выделения пластов горных пород и определения их литологического состава. Диаметр скважины измеряется с помощью каверномеров, которые различаются по своим конструктивным особенностям. Движение измерительных рычагов под влиянием изменения диаметра скважины преобразуется с помощью датчиков в электрические сигналы, передаваемые на каротажную станцию и регистрируемые в виде кавернограммы. Каверномер представляет сведения о среднем диаметре скважины. Для более детального изучения формы сечения диаметра скважины применяют каверномеры-профилемеры, которые позволяют измерять диаметры скважины в двух взаимно перпендикулярных плоскостях с выдачей значений их полусумм.
Инклинометрия
Скважины в зависимости от геологических, геоморфологических и других условий проектируют или вертикальными или наклонно направленными. В процессе бурения ствол скважины обычно отклоняется от заданного направления из-за влияния ряда геологических и технических факторов, т.е. искривляется. На определенном интервале глубин положение ствола скважины характеризуется углом отклонения скважины от вертикали δ и азимутом φ. Плоскость, проходящую через вертикаль и ось скважины на данном ее участке, называют плоскостью искривления. Сведения об искривлении скважины необходимы для установления положения ее забоя в пространстве, при построении профильных геологических разрезов, структурных и других геологических карт. Замеры искривления скважин осуществляются инклинометрами.
Отбор проб
Предназначен для отбора из ствола скважины глубинных проб жидкости в герметичные транспортируемые контейнеры для последующего их анализа в лабораторных условиях, а также для отбора проб воды из гидрогеологических скважин. За один спуск отбирается одна глубинная проба.
Методы отбора: в герметичный контейнер в статическом положении пробоотборника в скважине способом поршневания, предотвращающим дегазацию пробы (всасывающий тип пробоотборника); в герметичный контейнер, внутренняя полость которого при спуске пробоотборника сообщается с содержанием ствола скважины, а при остановке прибора на заданной глубине производится закрытие верхнего и нижнего впускных клапанов контейнера (проточный тип пробоотборника).
Доставка пробоотборника на заданную глубину и управление им: на каротажном кабеле и управлением при помощи подачи напряжения на пробоотборник с поверхности с помощью стандартного каротажного источника питания (управляемый тип пробоотборника), на скребковой проволоке, колтюбинге или на НКТ, с автономным питанием и программируемым временем отбора пробы (автономный тип пробоотборника).
Видеокаротаж
Видеокаротаж – это неотъемлемая часть геофизических исследований, которая осуществляется вместе с произведением буровых и ремонтных работ в разведочно-эксплуатационных скважинах. Применение видеокаротажа наиболее актуально для решения задач связанных с контролем и диагностикой технического состояния скважины, в том числе и во время проведения аварийных и ловильных работ. Благодаря съемке осевой и радиальной камерами удается определить и детально изучить механические нарушения конструкции скважины, такие как порывы, свищи, смещения и замятия эксплуатационной и обсадной колонн, посторонние предметы в скважине, обрушения и завалы в открытом стволе. Видеозапись позволяет определить глубину расположения, форму и размеры изучаемого объекта.Также благодаря видеосъемке удается определить движение воды в скважине, а также направление, характер и скорость этого движения. Полученные результаты позволяют установить герметичность башмака обсадной колонны, определить зоны активного водопритока и поглощения, а также места перетока между вскрытыми водоносными горизонтами.
Инструмент создает чрезвычайно четкое цифровое изображение стенки скважины с непрерывной разверткой на 360°, будь то в воздухе или в чистой воде. Может быть достигнуто разрешение до 1800 пикселей по окружности скважины, что делает камеру идеальной для литологического, минералогического и структурного анализа. Встроенный модуль высокоточного ориентирования, состоящий из 3-компонентного феррозондового магнитометра и трех акселерометров, делает возможным ориентирование изображений по глобальной системе координат, а также определение азимута и наклона ствола скважины.
Решаемые задачи: подробная и ориентированная структурная информация разреза вскрытого скважиной, обнаружение и оценка трещин, обнаружение тонких слоев, определение падения напластования, литология и минералогическая характеристика, обследование обсадной колонны.
Резистивиметрия
Под резистивиметрией понимают измерение удельного электрического сопротивления жидкости ρс, заполняющей скважину, с помощью скважинного резистивиметра. Значения сопротивления промывочной жидкости необходимы при вычислении истинных удельных сопротивлений пород на основании кажущихся. Сопротивление жидкости замеряют и при определении места притока воды в скважину. Т. к. удельное сопротивление ρс сильно зависит от температуры, измерение удельного сопротивления сопровождается измерением ее температуры. Скважинный резистивиметр представляет собой обычный каротажный зонд малых размеров (расстояние между электродами 2–3 см). Электродная установка резистивиметра в наиболее простом случае помещается в трубу из изолирующего материала с открытыми торцами, по внутренней поверхности которой расположены три кольцевых электрода А, М и N, образующих однополюсный градиент-зонд. При перемещении резистивиметра по скважине жидкость свободно циркулирует через трубу, которая служит изолирующим экраном, исключающим влияние среды за пределами определенного объема жидкости (стенки скважины, обсадной колонны). Измерения резистивиметром выполняют по схеме, аналогичной замеру при обычном электрическом каротаже методом сопротивления.